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Abstract-The macroscopic thermal behaviour of heterogeneous materials is studied using the ensemble 
averaging technique. The non-local constitutivc relations for heat conduction are derived. They relate the 
ensemble averaged heat flux and energy density to the ensemble averaged temperature of the medium. All 
the effective properties appearing in the relations are defined with help of the newly introduced. so-called 
microstructure func~iolls. The asymptotic behaviour of the hetero&en~ous media for slowly varying average 
temperature fields was investigated. Possible applications of the theory are presented in two examples when 

analytical results could be easily obtained. 

INTRDDUCTION 

HETEROGENEOUS materials like porous, granular 
media, solid suspensions, two-phase media or com- 
posites are widely used in engineering practice. The 
behaviour of the materials under different thermal 
loads is seriously influenced by their inner structure. 
The microstructure is usually so compi~cated that it 
forces a macroscopic (effective) approach for descrip- 
tion of heat transfer processes in the media to be 
commonly adopted. In this macroscopic approach the 
non-homogeneous medium with step-like properties 
is repIaced, in some averaged sense, by a continuum 
with constant (or continuously changing) effective 
properties. 

Two forms of continuum models are usually 
utilized. In the first case, called pseudohomogeneous, 
the heterogeneous medium is modelled as a single 
phase with certain effective properties and its behav- 
iour is described by one averaged temperature [l-3]. 
In the second one, called heterogeneous (or mixture), 
components are invisioned as forming continua co- 
existing at every point of the medium [4, 51. Different 
effective properties and average temperatures are 
assigned to each of the continua which in turn mutu- 
ally exchange energy. 

The following mutually combined problems are 
often met when an cff‘ective approach is applied for 
continuum modelling of heat transfer processes in 

heterogeneous media. 

(i) 

(ii) 

Formulation of energy balance equations for 
averaged quantities. 
Closure problem for the equations understood 
as a need for stating relations between averaged 
quantities appearing in them (e.g. averaged 
heat flux) and averaged temperature (or aver- 
aged temperatures in the mixture models). 

If the above problems are solved more or less standard 
analytical or numericai methods may be used to 
obtain a distribution of the averaged temperature in 
the medium and to calculate quantities derived from 
it. Solution of the problems is, however, very difficult 
(and as yet not totally solved) due to the presence of 
different modes of heat transport in heterogeneous 
media (conduction, convection, thermal radiation) as 
well as the complicated microstructure of the media 
which may even change during the process. 

In the paper it was assumed that the conduction 
mode of heat transfer in the medium is the only one 
present and that the medium does not change its 
microgeometry with time. Thermal properties of 
constituents are treated as temperature independent 
as is usual. 

Most of the recent approaches to continuum mod- 
elling of heat conduction in heterogeneous materials 
are limited to periodic structures [ 1-3, 61, unbounded 
domains [i’, 81 or processes or slowly varying with time 
19, IO]. At the same time boundary effects, manifesting 
themselves as drops of temperature in the vicinity 
of walls bounding the heterogeneous medium were 
experimenrally observed [ 11, 121. They may seriously 
influence the heat transfer rate, for, e.g. in chemical 
reactor technology especially for low ratios of particle 
diameter to stagnant bed dimensions. When short- 
duration temperature pulses are initiated in an het- 
erogeneous medium they may lead to quite different 
thermal behaviour from that theoretically predicted 
[13, 141. For instance, thermal diffusivity measure- 
ments of fiber-reinforced or laminated composites 
(e.g. by the flash method) happened to decrease with 
time [ 1.51. It seems then justified to try to derive a more 
general theory that could take these observations 
potentially in account and could refer to both periodic 
and random media. 
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NOMENCLATURE 

A inclusion surface Greek symbols 
L volumetric specific heat 0 IX-x’s function 
Y internal energy density i thermal conductivity 
G Green’s function 5 (local) coordinate vector 

GL Green’s function for infinite medium component characteristic function 
k wave vector. /k/ = k = 2njA Z microstructure function of the first kind 
I characteristic microdimension * microstructure function of the second 
1, characteristic macrodimension kind 
n outwardly directed unit Q volume. 

vector 

4 heat flux Other symbols 
t time <->, volume average for the test inclusion 
T temperature ensemble average 
1) volume fraction ;:;* conditional ensemble average 
X (global) coordinate vector. (‘, time derivative. 

Note : upper indices closed in brackets indicate tensor order of a quantity. 

ENSEMBLE AVEBAGING AND APPROXIMATE 

DESCRIPTION OF MICROSTRUCTURE OF 

A HETEROGENEOUS MEDIUM 

f-(t,Xj! = .(f,XlA)p(A)dA 
! 

(1) 

Methods qf‘ar;eruging 
Two different averaging methods are broadly used 

in formulation of macroscopic heat conduction equa- 
tion in heterogeneous materials. The most popular is 
volume averaging [6, 16, 171. When this averaging 
procedure is applied to an arbitrary field quantity the 
integration is carried over the so-called representative 
volume R, surrounding the point in question x 

(* (t, x)) = R, ’ I *(t.x+r)dr. 
LE, 

In periodic structures the point x is equated to a 
grid point x, of the net while Sz, is understood as 
the cell volume. Continuum values for the quantities 
(* (t, x)) are derived from the discrete ones after appli- 
cation of the Fourier transform and truncation the 
obtained series by the so-called first Brillouin zone [I]. 
For media with no periodic structure all that is known 
of the averaging volume R, is that its dimensions 
should be much greater than the microdimension 
related to the structure and much less than the bulk 
dimension of the medium. 

Another technique of averaging recently became 
more widely accepted--ensemble averaging [5, 8, 10, 
18, 191. In this technique one strictly determined way 
of geometric distribution of constituents is treated as 
a separate configuration A-an element of the sample 
space. The configuration may be defined both for 
random or periodic distribution of constituents. Any 
change in position of constituents with respect to 
boundaries of the medium is understood as a different 
configuration A. The ensemble average of any func- 
tion * (t. x/A) is then defined as 

where pt.4 1 
p(A) dA a 
space. 

is a probabilistic density function and 
probabilistic measure over the sample 

The main advantage of ensemble averaging (in con- 
trast to volume averaging) is that operations of 
differentiation and ensemble averaging commutate in 
most cases. This follows from the appropriate 
theorems about differentiation of integral expressions. 
Moreover ensemble averaging may be used for ran- 
dom and (with proper interpretation) for periodic 
media. Boundary problems. practically insoluble with 
the volume averaging method, can also be handled by 
this method of averaging. Finally it should be noted 
that there exist cases when comparison of the ensem- 
ble and volume averaged quantities is possible. If a 
random field is defined over an infinite region of space 
and if it is statistically homogeneous, i.e. its ensemble 
average is not a function ofposition, then it is possible 
to invoke the ergodic theorem. The theorem equates 
the ensemble average with the volume one. Due to 
greater versatility of the ensemble averaging technique 
it will be used in the subsequent derivation of the 
effective heat conduction equation. 

Description qf‘microstructure 
The microstructure of a heterogeneous medium is 

the main feature that distinguishes homogeneous and 
heterogeneous materials. Description of the micro- 
structure is thus an important element of studying the 
effective behaviour of heterogeneous materials. It is 
convenient to describe any configuration A of con- 
stituents distribution in the medium with help of the 
so-called characteristic function 0, associated with the 
jth kind of constituent and defined as 
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H,(x]A) = 
1 for x Ejth kind of constituent 

0 for x #jth kind of constituent (2) 

where 

; O,(xlA) = 1 
,‘I 

and N is the number of constituents. 

Except for periodic materials, complete knowledge 
of the characteristic function is not practically 
possible. Two different ways of description of the 
microstructure are widespread. 

In the first case the n-point correlation functions are 
used. They are the statistical moments of the various 

order of products of the characteristic function 

belonging to the same or different constituents of the 
medium [20,21]. The correlation functions allow stat- 
istical classification of the various types of het- 
erogeneous materials to be introduced [21]. Never- 
theless they are very difficult to determine exper- 

imentally so some model correlation functions have 
been proposed. It is, however, difficult to state re- 
lations between these model functions and charac- 

teristic features of the microstructure of the real 
media. 

In the second case, an approximate description of 

a heterogeneous medium geometry is done by stating 
the probability (or probabilistic density) associated 
with the position of different phase grains in the 
medium, their shape, orientation and dimensions. The 
probabilistic density function p(A) in (1) may then be 

expressed as a product 

P(A) =P,(x).P?l,(AIx)*... 

where p, is the so-called ‘one-particle distribution’ 

function, p 2, ,--‘pair distribution’ function. This way 
of describing the microgeometry of a hetero- 
geneous medium, although less general than the 

former one, allows the influence of the characteristic 
features of the medium structure on the heat con- 
duction process to be studied much more simply. 

FORMULATION OF THE EFFECTIVE HEAT 

CONDUCTION EQUATION FOR A 

HETEROGENEOUS MEDIUM 

The heat conduction equation for a definite dis- 
tribution of constituents in volume R occupied by a 

heterogeneous medium (i.e. configuration A) may be 
obtained from the energy balance equation 

-V*q(t,xlA)+%(t,x) = 44LXl4 (3) 

when the following constitutive relations between heat 
flux q, inner energy density e and temperature T are 
utilized 

-q(t,xlA)= l(xlA)VT(t,xlA) (4) 

where 

e(t,xlA) = e,+c(xlA)T(t,xlA) (5) 

WA) = f q,(xl4, c(xlA) = 2 c,O,(xlA). 
/= I ,=, 

The heat conduction equation should be completed 

with initial and boundary conditions. The subsequent 
form of the conditions was assumed 

T(O,x]A) = T,(x]A) inR (6) 

-q(t,xlA)*n+a(x)T(t,xjA) =Jk(t,x) 0niXL (7) 

Dirichlet, Neuman or Cauchy type boundary con- 

ditions may be obtained from (7) by proper choice of 
functions a(x) and ,fA(f, x). It should be stressed that 
these functions as well as a function describing density 
of heat sources in the medium in equation (3) are 

assumed to be independent of the medium micro- 
structure. 

By taking the ensemble average of equations (3)) 

(5) the following expressions were obtained 

-v* {q(t,x)} +4Jt,x) = &{&,x)) (8) 

- Iq(t. x)} = fWW& x)1 (9) 

{e(t, x)} = e0 + {c(x)T(t, x)} (10) 

together with the initial and boundary conditions : 

{T(O,x)} = {T,(x)} inn (II) 

-iq(t,x)}.n+a(x)jT(t,x)} =.fa(x) on22 (12) 

The set of the equations (8))( 12) may only be solved 

when relations between average heat flux (q}, inner 

energy {e} and the average temperature { T} are given, 
that is, the previously mentioned ‘closure problem’ 
for energy balance equation is solved. These relations 

could, however, be derived from (9) and (10) when 
dependence of temperature T(t, x]A) on the ensemble 
averaged temperature {T(t, x)} is known. The latter 
relation may be obtained according to the following 

reasoning. 
The energy balance equation (3) can be rearranged 

using equations (4) and (5) to 

+q,(t, x) -e(xiA)a,T(t, xiA)i = 0 (13) 

where I., is a constant reference thermal conductivity 
and 

E.‘(x]A) = I(x]A) -1,. (14) 

Equation (13) can be formally solved by regarding the 
second term on the left-hand side as an imaginary 
heat source 
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j-(&x/A) = - VG(x,x’).i’(x]A)VT(r,x’]A)dx’ 

G(x. x’) [r;lv(t> x’) 

-c(x’~~)O,T(t,x’lA)] dx’ 

P 

_ J G(x. x’)q(r, ~‘1.4) * n dx’ 
in 

i.,VG(x, x’) *nT(t, x/IA) dx’ (15) 

where n is the external unit vector to the surface XI. 
The Green’s function G(x, x’) appearing in equa- 

tion (I 5) is a steady-state one defined by 

V*&VG(x,x’)+6(x,x’) = 0 in0 

i,VG(x,x’)-n+cr(x)G(x, x’) = 0 onsurfaceaQ 

(16) 

where 6(x, x’) is the Dirac delta function. 
By taking the ensemble average of equation (I 5), 

subtracting the obtained expression from the former 
one and taking into account equation (16) the fol- 

lowing equation may be written 

7”(t,xlA) = {T(t,x)) - 
i 

VG(x,x’) 
II 

* [;.‘(x’lA)VT(r, X’IA) 

- {i’(x’)VT(r, x’))] dx’ 

- 
s 

G(x, x’)[c(x’]A)&T((t, x’]A) 
n 

- ic(x’)ii, 7-(t, x’)}] dx’. (17) 

We now look for such a solution of the above equation 
that would enable influence of the ensemble averaged 
temperature {T(r,x)i on temperature 7’(t, xjA) to be 
effectively separated from fluctuations of temperature 
related to the local change of thermal properties of 
the medium. The solution may be formally cast in the 
form 

7”(r,xlA) = {T&x))+ &x,x’]Af*V(T(t,x’);~dx 

+ 
ii 
II : $(t. 1,. x, x’]A) ?,- ; ?-(r’, x’); dr’dx’. 

(18) 

Two unknown functions : steady one Cp(x, x’] A) and 
transient $(t, t’, x, x’l A) which appear in equation 
(18) were, in the subsequent reasoning, referred as the 
microstructure functions of the first and second kind, 
respectively. By introducing equation (IX) into equa- 
tion (17) the following integro-di~erential equations 
for the microstructure functions were obtained 

dJ(x.X’!A) = - f2VG(~1 y) . [A'(ylA)(S(y, x’)Q .I 
+V&y. x’lA)) - ;i’(y)(ii(y, x’)?J 

fVqb(y, x’)))] dy. (19) 

i&r. f'. x. X’jAf = - r VG(x. y) 

.s 

~[i’fyld)vli/(t. t’.y.x’lA) 

- (i’(y)V$(t, t’, y.x’)j] dy’ 

- 
?’ 

G(x,y)[c$y].4)(ii(y, x’) 
II 

-v*+fy,x’lAfi- ;cfy)(ii(y,x’) 

-V*$(y.x’))J]dyS(t.t’) 

- G(x,y)[c~(ylA)i,r~(t, t’,y.x’lA) 

~1c.(y)c?,rlr(t.t’.y.X’)j]riy (20) 

where 

Il/(f, t’ = t. x,x’(A) = 0. (21) 

It should be noted that the microstructure functions 

#, $ are not dependent on the average temperature of 
the medium. 

The expression (18) is then substituted into equa- 

tions (9) and (IO). This leads to the following relations 
between the ensemble averaged heat flux or internal 
energy density and temperature 

- {q(t, x,] = &(x, x’) - V{ 7-(r, x’)) dx’ 

+ v,,( t, t’, x. x’) (3, ; T( t’, x’)) dt’ dx’ 

(22) 

{e(t,x)} =e,-tc,r(T)+ ~.F(x.x’).VIT(t,x’)}dx’ 

-i- u &.,(t. t’, x, x’) i,. j ?-(r’. x’,j dr’dx’. 
“II 0 

(23) 

The quantities l,r, v,r: c,r, xer and ppf are defined as 

&(x,x’) = ~~(X)[Qb(x,X’)+V~(X,X’)l~, 

v&t. f’, x, x’) = [,qx)Vlj(t, t’, x, x’,j, 

c,,(x) = {c(x)]. 

x&G x’) = ~~(x,m, x’) 1, 

pel-(t, t’, x, x’) = {c(x)i(t, t’, x, x’,j. (24) 

The relations (22) and (23) are non-local ones. This 
means that. in contrast to local constitutivc relations 
(e.g. of Fourier law type), the ensemble averaged heat 
flux {q] and energy density (e) depend not only on 
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the ensemble averaged temperature (T) (or its deriva- 
tives) in the considered point x and moment of time 
t but on a distribution of the average temperature in 
the whole volume embraced by the heterogeneous 
material and changes of the distribution from the 
starting paint of a thermal process up to the con- 
sidered time t, i.e. are history dependent. 

Non-local relations between physical quantities 
were known in the past. They were, for instance, pro- 
posed in the elastostatics, viscoelasticity or elec- 
trodynamics of dispersive media. In contrast to them, 
however, in the present case the exact expressions for 
estimation of material functions appearing in equa- 
tions (Z-(24) were given. The additional virtue of 
the presented theory is also a possibility of calculation 
of local values of temperature T(t, xlA) for a definite 
distribution of constituents A from the known values 
of the ensemble averaged temperature { T(t, x)) and 
the proper microstructure functions. 

When the conditions stated by Eringen in ref. [24] 
are ful~lled the relations (22) and (23) may become 

the constitutive equations for the effective pseudo- 
homogeneous medium. Then the material functions 
A<,-, vCr, cCf, xer and I_L,~ could be treated as the effective 
thermal properties of the heterogeneous medium. 

If the discussed relations are introduced into the 
ensemble averaged energy balance equation (8) the 
effective heat conduction equation will be obtained. 

FORMULATION OF THE EFFECTIVE HEAT 

CONDUCTION EQUATION FOR SLOWLY 

VARYING AVERAGE TEMPERATURE FIELDS 

In the most types of heterogeneous media it is pos- 
sible to find out a certain characteristic length 1 related 
to variation of such local properties of the medium as 
its thermal conducti~~~ty or specific heat. This charac- 
teristic length may be, for instance, a distance between 
inclusions in periodic materials, a dimension of a grain 
or cell in granular or polycrystalline materials, charac- 
teristic radius of correlation in the statistical descrip- 
tion of the medium microgeometry. The length I will 
be subsequently called the microdimension of a het- 
erogeneous medium. 

On the basis of the microdimension a local coor- 
dinate system can be introduced. In order to do this 
a point XT was distinguished from the whole set of 
characteristic points x,*(A) used for geometrical 
description of the microstructure. The point XT has a 
unique feature of being the nearest to the considered 
point x of the medium (Fig. 1). The local coordinate 
system combined with this point is then defined as 

5(/i) = [x-x:(,4)]/1. (25) 

The quantities related to heat conduction in a het- 
erogeneous material may be divided into three groups. 

(1) Dependent only on configuration A, e.g. ii(xjA). 
CfXlA). 

“local” coordinate 

FIG. 1. Relation between ‘local’ c, and ‘global’ x, system of 
coordinates. 

(2) Dependent both on configuration A and on a 
position with respect to boundaries of the 
medium, e.g. T{t, x/A), q(t, xlA), e(t, xlA). 

(3) Independent of configuration, e.g. e,, A”, q.,(x). 

Every field quantity dependent solely on micro- 
structure (i.e. on configuration A) may be rewritten 
in the form 

*(x(A) = *(CIA) 

while this being a function not only of a con~guration 
A but also of position with respect to boundaries niay 
be presented as 

* (f. xl4 = ’ (t, r, XL4 

The gradient of a quantity belonging to the first group 
may be expressed as 

V-(x/A) = I-‘VI *({/A). 

while that belonging to the second group can be cast 
in the following form 

V-(t,xjA) = V-(t,<,xlA) = V;(t,<,xlA) 

+l-‘V,.(r,{,xlA) 

where V, denotes operation of differentiation with 
respect to the local system of coordinates 4, V, with 
respect to global system of coordinates x. 

If changes in temperature are relatively slow, both 
in space and time, a difference between a local value 
of temperature T(t, xJA) and the ensemble averaged 
temperature { T(t, x)} is small. The difference is given 
by the second and third term on the right-hand side 
of equation (IS). The equation may be then presented 
in a slightly transformed form 
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T(t, xl4 = {T(r, x,} ‘rl s qqr, x. x’IA)jl 
Cl 

. V{ T(t, x’)} dx’); dx’ &(x) = {c(x)f#@(x)} 

PL?dW = i~(xMzo(x): 

x (:, (7(r’.x’,) dt’dx’. (26) 

The non-local relations, given by equations (22) 
and (23), are thus reduced to the local form, given by 
equations (30) and (31). for the case of temperature 
slowly varying in space and time. They are linear but 
in contrast to simple expressions valid for homo- 

geneous media they have much more complicated 
form. Temperature gradients of order higher than one 
and time derivatives of temperature arc included in 
them. The remanent reminding of their non-local ori- 
gin is a characteristic microscale parameter 1. 

This form of the equation (26) suggests application of 
a multipole expansion technique to be used in order 
to obtain a simplified version of the relations (22) and 
(23). The following expansions for the microstructure 
functions were assumed 

&C> x, x’M)lI = 4, (5, x1.4) *6(x, x’) 

-@(?2’(<. x(A) .V,~(X, x’) + ‘. (27) 

ti(t, t’, 5, x, x’M)!lZ = tiX,(C, xl‘Mx, x’Nr, t’) 

-&“(5, XlA) .V,6(x, x,)&t, t’l+ ” (28) 

The equations (27) and (28) may be interpreted as 
expansions in a series of a small parameter I/L where 

L is a characteristic macrodimension connected with 
changes of temperature for a reference, homogeneous 
material of shape, dimensions and thermal boundary 
conditions identical to these of the heterogeneous one. 

When the expansions (27), (28) had been intro- 

duced into equation (26) the following expression for 
the relation between local and the ensemble averaged 
temperature was obtained 

T(r,x)A) = {T(t,x)j 

+I~,(5.xlA).V,{T(t,x)J 

+IZ[~‘zZ’(~,xJA):V~~‘~T(t,x)) 

+~?“(5rXI~)~l~~(t,X)}l+0(~1). (29) 

Similarly from (22) and (23) the following relations 

binding the ensemble averaged heat flux, energy den- 
sity and temperature were derived 

-{q(t,x)) = n;$(X).VsjT(l.x)) 

+u:,‘i(X).V~2)iT(t,x)i 

+,z[ngyx):v;“{T(t.x); 

+v~~~(x):v;2’2,{7-(t.x):]+ “. 

{e(t, 4) = ~,,+Gwl T(t, x)l 

+h&4~vgjm,x)~ 

+r’[X~~~(x):V~‘(T(t,x)} 

+P(ZedX)~ti~(Gx))l+ “’ 

The material functions appearing in the 
expressions are defined as 

M(x) = {r,(x)(Q +V,+,(x))) 

U(x) = (n(x)(Q~,(x)+V,~I~)(x))} 

(30) 

(31) 

above 

ng!(x) = {n(x)(~~Y(x) +v,4’,%))} (32) 

v8Cx) = j~(x)(QIcl*“(x)+vl~~“(x))~ 

If a ratio of the parameter I to the character- 
istic length associated with changes of temperature is 
very small, terms starting from second order in (30) 
and third order in (31) may bc neglected and then the 
analogical relations to those for homogeneous media 
are obtained. 

If a symmetrical (from a statistical point of view) 

distribution of constituents is present in a het- 

erogeneous medium, and for location far from walls 
bounding the medium the functions A(,:/ in equation 
(30) and Y,,,~ in equation (31) take on zero values. The 
discussed functions A&!;. A$, viz/. cCT, xi:/ and /L?,., can 
then be treated as the effective properties of the het- 
erogeneous medium. 

In order to obtain equations for the unknown func- 
tions $F’, I/?!; ‘) which appear in definitions of the 
effective properties, expansions (27) and (28) were 
substituted into equations (19) and (20). This leads to 
the following equations for these functions 

-(i.‘(Q~I::rl(+V,~l’~j)}]dr’ (33) 

where G, (<, 5’) is a proper Green’s function expressed 
in the local system of coordinates. 

EXAMPLES OF APPLICATION OF THE 

THEORY 

The presented theory may be used to study different 
phenomena associated with heat conduction in het- 
crogeneous media such as, e.g. thermal behaviour 
of the media for abrupt changes in environmental 
conditions and boundary effects. It can be also applied 
for a priori estimation of effective properties of non- 
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homogeneous materials. Two such examples have 
been presented for illustration below. 

The non-locality of the eflective thermal conductivity 
Let us consider a two-component material con- 

taining spherical inclusions of radius R and thermal 
conductivity ii distributed chaotically in a matrix of 
thermal conductivity I.,,,. The inclusions are dis- 

tributed randomly in such a way that the medium 
may be treated as the statistically homogeneous and 
isotropic in the sense proposed by Kroner [21]. The 

statistical homogeneity means that all positions of 

centres of spheres have equal probability inde- 
pendently of the other stochastic parameters describ- 

ing the medium microstructure. 
The distribution of neighbour spheres with respect 

to a single, selected sphere in the medium is char- 

acterized by a ‘pair distribution function’ p2,, of the 
form given by Hashin [22]. For this, so-called ‘sphere 
assemblage model’ the probability function pZi, is 
given by the expression 

{ 

0 for jx;-xy] < 1 
PZ/l = 

Q-’ for Ix:--XT] > 1 (35) 

where x: and x2 are vectors of positions of centre of 

two neighbour spheres, 1 = R/v,“’ and vi is volume 
fraction of spheres. Let us additionally assume that 
the heterogeneous medium can be treated as infinite 

not to consider complications caused by presence of 
boundary effects. 

The infinite Fourier transform has been sub- 
sequently applied to a definition of the effective ther- 
mal conductivity I,, in equation (24) and the equation 
(19) for the microstructure function +(x1,4). This leads 
to 

6,(x, k) = Am +i:v,(Q +&V&x. k)/v,). (36) 

&x,klA) = - VG,(x,y)* [n’(y]A)(I exp(ik*y) 

+V&y,W))- V'(y)(Q exp (ikay)+ Vd%y,W)ldy 
(37) 

where I’(y) = I(y) -I,, 1: = &-I,,, and G,(x, y) is 
the retarded Green function tending to zero at large 
distances, also, for the sake of clarity, quantities in 
the Fourier space have been marked by a tilde. 

It is advantageous to seek a solution of equation 
(37) for an inclusion centred at the origin of the coor- 
dinate system. So for an arbitrary position of inclusion 
centre, e.g. at x*, the micro structure function 6 may 

be written in the form 

6(x, k[A) = &(r, klA) exp (ik * x*) (38) 

where r = x-x*. Then noting the statistical hom- 
ogeneity of the heterogeneous medium the ensemble 
average in definition (36) can be expressed as 

{e,(x)V&x,k)} = vi({V&r, k)}*exp (-ik*r)), 

(39) 

where ( s)~ is understood as the volume averaging over 
the considered inclusion and the symbol {a} * denotes 
the conditional average defined as 

where p(AJx*) d(A]x*) is meant as the conditional 
probability for the case when the position x* of the 
test inclusion is fixed. 

For the considered spherical shape of inclusions 

randomly distributed in the matrix, the solution of 

equation (37) was assumed in the form 

&r,klA) = e(k)exp(ik-r) 

+ f c,,,(k)r”P,,(cos yJ (40) 
II = 0 

where P,, are Legendre polynomials of order n and yrk 

is treated as an angle between the r and k vectors. The 
above expression, after taking into account equation 
(38), was introduced into equation (37) which together 
with the assumed form of the pair distribution 
function pz, , allowed the coefficients E(k) and C,,(k) 

to be easily obtained. Then substituting these 

coefficients into equations (39) and (36) the following 
expression for the effective thermal conductivity could 

be written 

Qk)/i, = 1+ 
u’(z+ + F) 

1 +o’(l -vJ+F 
(41) 

where cr’ = (,&-&,,)j/$,,, 

aJ 3u’ui(n+ 1)(2n+ 1) F=-j_-_ 
“=O o’+(2n+ 1)/n 

and j, denotes the spherical Bessel function of the first 
kind and nth order. 

The function &/&,, calculated from (41), was plot- 

ted in Fig. 2. The modulus of the wave vector k may 

be understood as being inversely proportional to the 
thermal wavelength A-k = 2rc/A. The value of A is 
related to the external action of the environment on 
the heterogeneous medium and as such may be equa- 
lized to characteristic macrodimension I. of the 
medium. By studying the behaviour of &/I,,,, with l/A 
it may be concluded that the maximal vaiues of ze-,, 
correspond to the ratio of l/A tending to zero. For this 
special case the effective thermal conductivity assumes 
values consistent with the well-known expression 

given originally by Maxwell [25]. This can be easily 

proved by making use of the asymptotic relation 

For the increasing values of Z/A the effective thermal 
conductivity is thus diminishing. For the case when 
Z/A * cc the effective thermal conductivity attains 
the following limit 

&,/I., = [Vi/0 + (1 - Vi)] ’ (42) 

where 0 = i,l&,,. This may be proved when another 
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FIG. 2. The effective thermal conductivity i,, for a model of the statistically isotropic composite with 
spherical inclusions randomly distributed in a matrix as a function of a ratio between microdimension I 

and macrodimension L = 2x/A. 

asymptotic relation valid for the spherical Bessel func- 
tions 

would be utilized. 
The expression (42) is identical with a formula for 

L,, of a laminated composite with heat flow per- 

pendicular to the composite layers. It should be noted 
that the asymptotic relation of the type given by equa- 
tion (42), for the statistically isotropic heterogeneous 
media of an arbitrary microstructure and small 
differences between thermal conductivities of com- 
ponents, had been previously foreseen by Beran and 
McCoy [ 181 after application of the perturbation 
method. The similar relation for the effective thermal 
conductivity of heterogeneous media was also 
obtained by Diener and Kaseberg [S] within the frame 

of the self-consistent approximation but using totally 
different method. This may serve as further evidence 
that the presented results are correct. 

Dependence of the effective thermal conductivity on 
the parameter I/A could be interpreted in the following 
way. For the position in space (or moments of time) 
where variation in the ensemble averaged temperature 
{T) are great enough that gradients of {T} of an order 
higher than one could not be treated as negligible 
the heterogeneous material behaves as if the effective 
thermal conductivity was smaller than that obtained 
from measurements carried out in steady state. This 
kind of the effect had been experimentally observed 
by Antoniszyn [13] in measurements leading to a 

determination of the cooling rate for a heated calor- 
imeter made of copper abruptly placed in a granular 

bed of spherical glass beads. If the bead diameter had 
been increased (corresponding to increase of the ratio 
PA) it would cause a decrease in the calorimeter 
cooling rate for a period of approximately a few 
minutes in comparison to a bed made of smaller 
diameter beads. 

The q$fectine thermai conductiziity ,jiw u two-phase 
~o~~pos~te with a small ~~~iurne.~~actio~ of in~~us~~n~s of 
arbitrary .~hu~e 

Let us consider a two-component material made of 

a matrix of thermal conductivity & and randomly 
distributed inclusions of an arbitrary shape and ther- 
mal conductivity i.,. In a similar way as in the previous 
example the medium is to be treated as infinite so 
not to consider complications introduced by the pres- 

ence of material boundaries. Moreover, let us assume 

that the ensemble averaged temperature does not sub- 
stantially vary in space so that the asymptotic form 
of the constitutive relations {q> and {Tj, consistent 
with Fourier law of heat conduction in homogeneous 
media, is valid. This corresponds to retaining the first 
term in the expansion given by equation (30). Accord- 
ing to the definition (32) the expression for the effec- 
tive thermal conductivity may be then cast in the form 

a,, = {i(l i-0,4,)) = i~,,,tl 

+i’r,]! i :(v,#,),i*J (43) 

where E.’ = /I,--&, and ( *)i denotes the operation of 
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averaging over volume of the selected, test inclusion 
for a definite shape, space orientation and location of 
the neighbour inclusions with respect to it. The symbol 
{ - ) * in equation (43) is understood as the conditional 
statistical averaging over the whole set of possible 
shapes, orientations and ~on~gurat~ons of the neigh- 
hour inclusions. 

In order to calculate rl,, microstructure function d,, 
is needed, which in accordance with equation (33), is 
a solution of the equation 

- {A’tQ +V,~,))ldQ (44 

I3oth equations (43) and (44) include the expression 
(I+ V , # ,) so it is convenient to introduce an auxiliary 
function 

c, = 5+cp, (45) 

which can substantially simplify the form of these 
equations. 

In equation (43) the value of V,4, averaged over 
volume of the test inclusion is of interest. So with the 
centre of this inclusion a local coordinate system 5 
had been bound. The Green’s theorem was then used 
to change the volume to the surface integrals. This 
allowed equation (44) to be written in the following 
form 

The first two terms on the left-hand side of the above 
equation refer to the test inclusion while the third term 
represents the influence of the other inclusions on the 
test one. The second term on the right-hand side of 
the equation is connected with the average value of 
the function 3, in the heterogeneous medium and as 
such is not dependent on the assumed configuration 
A of inclusions distribution. 

For a small volume fraction vi the influence of the 
other inclusions on the selected one may be neglected. 
Then the conditional ensemble average (*I* appear- 
ing in equations (43) and (46) is understood as the 
ensemble average over all allowable set of the test 
inclusion shapes and orientations. In order to cal- 
culate 4, the third term on the left-hand side of equa- 
tion (46) was thus abandoned and its solution 
assumed to be 

3, = a=*<. (47) 

After introducing this form of function 3, into equa- 
tion (46) a linear equation for constant @ has been 

obtained which, when used together with (47) in defi- 
nition of& leads to the following expression for the 
effective thermal conductivity of the composite 

&/a, = II -+++{(II +cr(P)- ‘)* 

.[~-~;~,jlFo.(1+rr,‘$)~‘j*]--’ (48) 

where oi = (&--&,,)j&,, and P is a tensor related to 
the shape of the test inclusion 

IP = a, V,G, n dA. (49) 

This tensor has some characteristic features, for ex- 
ample its trace is equal to unity, and has been more 
deeply discussed elsewhere (e.g. in ref. [ 191). 

The effective thermal conductivity A,, of two-com- 
ponent heterogeneous medium with an ellipsoidal 
shape of inclusions (ellipsoids of revolution) and their 
random orientation in space is shown in Fig. 3. It has 
been presented in relation to the effective thermal 
conductivity of spherical inclusions (P = (l/3)11) in 
order to clearly illustrate the influence of inclusion 
shape on this property of the composite. It can be 
observed that for this type of the statistically isotropic 
heterogeneous material and ,?,/L, > I the effective 
thermal conductivity may be substantially greater 
(several times) then the effective thermal conductivity 
of a composite with spherical shape of inclusions. 
For ii/E.,,, < 1, however, a certain asymmetry in & 
behaviour comes out. For inclusion in the form of the 
battened ellipsoids the effective thermal conductivity 
strongly decreases when the ratio a/b of the charac- 
teristic ellipsoid dimensions diminishes, however, for 
the elongated shape of the inclusion (assuming the 
form of fibres) and 1,/i, < 1 the value of lef is prac- 
tically indistinguishable from the appropriate value 
for a composite with spherical inclusions. 

The additional comparison between the effective 
thermal conductivity values obtained from the derived 
formula (48) and the experimental ones, given in ref. 
[25] by Yamada and Otta, is shown in Fig. 4. The 
composite had been made by randomly spreading lead 
inclusions of ~~rallepipedal shape in the epoxy-resin 
matrix. Noting the simplifying assumptions that had 
been made the consistence of the results seems 
satisfactory. 

CONCLUSIONS 

A theory of macroscopic, effective description of 
heat conduction in heterogeneous materials was 
derived with the help of the ensemble averaging tech- 
nique and Green’s function method. The main results 
are contained in equations (22) and (23) of the deri- 
vation where the relations between the averaged heat 
flux or energy density and the ensemble averaged tem- 
perature are given. These equations are the solutions 
of the closure problem for the effective heat con- 
duction in non-homogeneous media and allow one 
to study many problems, both steady and transient. 
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FIG. 3. The efrective thermal conductivity ACr for the statistically isotropic medium with ellipsoidal inclusions 
spread randomly in a matrix vs ratio of the ellipsoid dimensions. (A-r), is the effective thermal conductivity 

of the composite with spherical inclusions. 

Far from the boundaries of the medium these equa- 
tions may be treated as the constitutive relations and 
the material functions appearing in them as the effec- 
tive properties of the non-homogeneous material. All 
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FIG. 4. The effective thermal conductivity of a composite 
with randomly oriented parallepipedal inclusions made 01 
lead (dimensions a = 2.55 mm, b = 0.8 mm, c = 0.45 mm) 
distributed in an epoxy matrix vs volume fraction of the 
inclusions (-.. experimental data from Yamada and Otta 

WI, __ resuits obtained from formula (49) [19], -- - 
results obtained from Maxwell formula [22] for the spherical 

inclusions). 

of these effective properlies were defined with USC of 
the so-called microstructure functions which depend 
solely on the thermal properties of constituents and 
their distribution in the material. The discussed consti- 
tutive equations are of the nonlocal type and indicate 
that the effective reaction of a heterogeneous medium 
varies according to the change in the ratio of a charac- 
teristic microdimension I of its structure to a macro- 
scopic dimension L related to variation of the ensem- 
ble averaged tem~eratui-e field in the medium. In the 
limit of I/L. + 0 the heterogeneous medium behaves, 
in the macroscopic sense, as a quasi-homogeneous 
one and its effective properties become independent of 
the microdimension 1. This is consistent with general 
observations of Kunin 1231. Also in this special case 
the microgeometry of the heterogeneous medium 
seems to have the greatest influence on its effective 
thermal conductivity. On the basis of the presented 
theory many other interesting problems associated 
with the heat conduction process in heterogeneous 
media can be studied in depth. Some examples were 
given in the work. 
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DESCRIPTION EFFECTIVE, MACROSCOPIQUE DE LA CONDUCTION THERMIQUE 
DANS LES MATERIAUX HETEROGENES 

R&rn~On etude le compartement macroscopique les milleux hererogenes a l’aide de la methode hom- 
ogenise statistique par l’ensemble des conlidurations de la structure. Nonlocales constitutives relations 
pour la conduction thermique sont deduire. Ces relations se joindent le flux moyenne de chaleur et densite 
de l’tnergie moyenne avec le temperature moyenne d’un millieu. Toutes les proprittes effective dans les 
relations sont define au moyen de noveux propose. si nomme, microstructures fonctions. Lc compartement 
limite des millieux heterogene pour lentement variables champs thermique sont envisage. On presente 
possible application de la theorie in deux exemples ce qui les rtsultats analytique sont simplement obtenue. 

EFFEKTIVEN MAKROSKOPISCHEN BESCHREIBUNG DER WARMELEITUNG IN 
HETEROGENEN MEDIEN 

Zusammenfassung-Makroskopischen Verhaltens des inhomogenes Mediums wird untersucht mit Hilfe 
der statistischen Vermittlerung tiber das Ensemble der Konfigurationen der inneren Strukturen des Korpcrs. 
Ermittelt werden die nonlokalen konstitutive Gleichungen fur die Warmeleitung in diesem Medium. Die 
Gleichungen verbinden die mittlere Wlrme Flux und die mittlere innere Energie mit die mittlere Temperatur 
des Mediums. Alle effektiven Eigenschaften das sind in diesen Gleichungen betrachtet, werden mit Hilfe 
die neue gefiihrtent, so gennant Mikrostrukture Funktionen definiziert. Die asymptotische Verhaltens des 
heterogenen Korpers fur langsam wechselnd mittleren Temperatur Felder wird untersucht. Moglische 

Anwendung fur die Theorie wird angegabcn mit zwei Bei spiele die sich einfach analytisch Itisen lassen. 
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3@DEKTWBHOE MAKPOCKOIIW~ECKOEO~HCAHMETEl-IJIOIIPOBO~HOCTH B 
1-ETEPOI-EHHbIX MATEPWAnAX 

AHHOT~UHSI-C UCnO,Ib30BaHRCM MCTOLIa yCpeXHeHHZ4 II0 aHCaM6nw HCCJICn)‘fOTCK MaKpOCKOnAYCCKAe 

TUIJIOBbIe xZ,paKTCpHCTHKH RTepOI’CHHbIX MaTCprtanOB. nO,IyYCHbI COOTHOUICHHR &“5, TCnJ,OI,pOBOJ,- 

HOCTH, CBR3bIBaIOLUllC ,‘CpC,IHCHHbIfi TCIIJIOBOii IIOTOK li WIOTHOCTb 3HCpI-HH C yCpC4HCHHOii TeMl,CpaTy- 

pOfi CpCLIbI. Bee BXOIIIlIUIiC B COOTHOLUCHBB 3C@ZKTABHbIC XapaKTCpriCTLiKIi OIIpCLICnSIlOTCK C IlOMOIUbIO 

HOBblx TPK Ha3bIBaCMbIX MHKpOCTpYKTYpHbIX &HKU& MCCJICnyIOTC~ aCHMIITOTWECK&E CBOftCTBa RTC- 

poreHHbIx cpen npa h4emeHHo mhfemmumxc~ nomx cpenmix Tehmepa-ryp. I~~HBOLWTC~ jma npmfepa 
IIpHMeHCHAK TCOpliH, KOrL,a MOmHO JIWKO IIOJIy’iEfTb aHZ+JIHTIIYCCKAe pe3y,IbTaTbI. 


